Intelligent Evolutionary Controller for Flexible Robotic Arm

Author:

Jamali Annisa,Mat Darus Intan Z.

Abstract

Abstract Robotic is one of the key technologies towards Industrial Revolution 4.0. Robotic system, especially robotic arm have received tremendous demand in various fields especially manufacturing industry. Robotic arm is highly needed to enhance production, improve output, reduce human error and the most importantly, earn more profit with fast return on investment. The current industrial robotic arm, not only they are very expensive and required specialist for maintenance, they are also very heavy and difficult to manoeuvre. These facts are the reason why robotic solution are still unaffordable in most small and medium manufacturing industries in developing countries. Despite all the drawbacks, there is still a pressing need to employ robotics solution with the inherent problems of worker-related issues and output quality. Today, work requires a nimble and versatile robot and yet remain reliable. Operating robots should be simpler, where the learning curve is less steep. The user interface should be friendly and intuitive. Recently, there is a growing interest in employing lightweight, stronger and more flexible robotic arm in various fields. However, lightweight robot arm can be more easily influenced by unwanted vibrations, which may lead to problems including fatigue, instability and performance reduction. These problems may eventually cause damage to the highly stressed structures. This research focused on the development of the intelligent evolutionary controller algorithms for controlling flexible robotic arm manipulator. The controller algorithm has been formulated for trajectory planning control and vibration cancelation utilizing intelligent evolutionary algorithms such as Particle Swarm Algorithm and Artificial Bees Colony. The developed evolutionary algorithms have been implemented and experimentally verified using robotic arm manipulator experimental rig. The performances of these intelligent evolutionary controllers were found to be far better than the conventional method in term of input tracking, trajectory control and vibration cancelation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Modeling and Control of Single-Link Flexible Arms with Lumped Masses;Feliu;Journal of Dynamic Systems, Measurement, and Control,1992

2. Symbolic modeling and dynamic analysis of flexible manipulators;Cetinkunt;Robotics and Automation,1987

3. Static and Dynamic Modeling of Two Flexible Link Robot Manipulator;Morrisa;Robotica,1996

4. Finite difference and finite element approaches to dynamic modelling of a flexible manipulator;Tokhi;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,1997

5. State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model;Yoshikawa,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3