The impact of Negative to Positive Training Dataset Ratio on Atrial Fibrillation Classification Machine Learning Algorithms Performance

Author:

Firdaus ,Herviant Juliano Andre,Rachmatullah Naufal,Putri Rafflesia Sarifah,Yunika Hardiyanti Dinna,Zarkasi Ahmad,Pratiwi Arisanti Ferlita,Nurmaini Siti

Abstract

Abstract With the few numbers of cardiologists in Indonesia who not evenly distributed, especially in rural areas, there has been a lot of smart telehealth specifically developed for heart monitoring using ECG. Many techniques have been developed to improve the accuracy of this device by using datasets that are mostly imbalanced, more positive data than negative. This paper presents the comparison of negative to positive training dataset ratio on atrial fibrillation classification machine learning algorithms performance. An AliveCor ECG recording dataset is train with deep neural networks, support vector machine and logistic regression as classifier with three different ratios, 1:1, 1:5 to 1:All. Results show an increase in classifier performance along with the increasing number of negative data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Cardiac Arrhythmias Classification Using Deep Neural Networks and Principle Component Analysis Algorithm;Nurmaini;Int. J. Adv. Soft Compu. Appl.,2018

2. Cardiac Arrhythmia Detection from ECG Combining Convolutional and Long Short-Term Memory Networks;Warrick,2017

3. Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review;Hagiwara;Inf. Sci. (Ny).,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3