Comparison of data-driven respiratory signal extraction methods from cone-beam CT (CBCT)

Author:

Mohd Amin A T,Mokri S S,Ahmad R,Abd Rahni A A

Abstract

Abstract In Cone-Beam CT (CBCT) imaging, respiratory motion needs to be considered to mitigate motion artifacts thus increasing the accuracy of reconstructed images. Data driven methods can be used to extract respiratory signal directly from projection data without requiring any additional equipment or surrogate devices. Digital phantoms provide an adequate option to evaluate developing methods prior to clinical implementation. In this study, four data driven methods are used to extract respiratory signal from simulated projections. An in-house 4D MRI-based CBCT digital phantom is used, where actual respiratory signal is available as ground truth. In comparing all four data driven methods, the respiratory signal extracted using the Local Principal Component Analysis (LPCA) method is found to be robust and yielded the highest correlation coefficient of 0.8644 compared to the ground truth.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Data Driven Respiratory Signal Extraction Methods from Cone-Beam CT using MR-based Digital Phantoms;2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC);2021-10-16

2. Comparison of Data-Driven Respiratory Signal Extraction Methods From Cone-Beam CT (CBCT) — a Preliminary Clinical Study;2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES);2021-03-01

3. Chlorophylls in thin-film photovoltaic cells, a critical review;RSC Advances;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3