Image style migration method based on transformer generative adversarial network combined with contrast learning strategy

Author:

Chen Xing

Abstract

Abstract Aiming at the problems of large loss of image patch embedding information and lack of stylized features in the generated image during transformer style migration, a style migration model combining contrast learning with transformer backbone generative adversarial network is established. Firstly, overlapping patch embedding is used to serialize the input images to get richer features; then the style and content contrast loss of contrast learning is used to mine the non-significant information between stylized images to reduce the style and content loss; finally, a multi-scale discriminator discriminates the true and false of stylized images to optimize the generator to get more stylistic features. The results on MS-COCO and WikiArt datasets show that the model improves the effectiveness and transformation efficacy of stylized images in style migration.

Publisher

IOP Publishing

Reference11 articles.

1. Advances in deep learning-based image style migration [J];Chen;Journal of Computer Engineering & Applications,2021

2. GANILLA: Generative adversarial networks for image to illustration translation [J];Hicsonmez;Image and Vision Computing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3