Precipitation nowcasting method based on Spatial-Temporal Dual Discriminators

Author:

Li Wenfeng,Zhou Xiao

Abstract

Abstract The prediction of radar echo sequence images is a spatiotemporal sequence forecasting problem, which is one of the main challenges in precipitation nowcasting. Addressing issues such as poor extraction of spatiotemporal features by previous models and blurry image sequence predictions, this study proposes a Spatial-Temporal dual Discriminator Precipitation Nowcasting Model (STD-SNGAN) based on spectral normalization generative adversarial networks (SNGAN). The model utilizes multi-scale convolution modules (Inception) to extract spatial features from radar echo images and convolutional gated recurrent units (ConvGRU) to extract temporal features between feature maps. By introducing a hidden feature sampler to enhance the extraction capability of the convolutional gated recurrent units and designing spatial-temporal dual discriminators to constrain the generator’s predicted samples, the spatiotemporal forecasting ability is enhanced. Experimental results demonstrate that the proposed STD-SNGAN model outperforms other algorithms in critical success index (CSI) and probability of detection (POD) for high echo intensity and long-term regions.

Publisher

IOP Publishing

Reference15 articles.

1. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting radar-based methodology;Dixon;Journal of Atmospheric and Oceanic Technology,1993

2. Convolutional LSTM network: A machine learning approach for precipitation nowcasting;Shi;Advances in Neural Information Processing Systems,2015

3. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lSTMs;Wang;Advances in Neural Information Processing Systems,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3