A top-view indoor localization based on discrete distillation of CLIP

Author:

Zhao Aojie,Liu Yifan,Cheng Kun,Ma Aiping,Yu Jianguo

Abstract

Abstract Indoor robot localization is a challenging problem in computer vision due to sensor obstacles in a crowded environment. Pure vision localization is increasingly popular since it does not require sensors other than low-cost cameras. We adopt a top-view camera setup, effectively avoiding the problem of positioning failure due to potential occlusion of front-view cameras. We use the distilling of a pre-trained large-scale vision language CLIP model to improve the performance degradation caused by the small data set size. Our solution achieved promising performance in our customized classification-based localization test data.

Publisher

IOP Publishing

Reference13 articles.

1. Survey on wireless indoor positioning systems;Ali;Cihan University-Erbil Scientific Journal,2019

2. RFID: A key technology for Humanity;Duroc;Comptes Rendus Physique,2018

3. Unsupervised indoor localization based on Smartphone Sensors, iBeacon and Wi-Fi;Chen;Sensors,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3