On the Inherent Polycrystal Stress Concentration

Author:

Gulin V V,Nikitin A D

Abstract

Abstract When analyzing the structural integrity of a material or structural part, the mechanics of continuous media is traditionally used with the concept of the homogeneity and isotropy of material properties; with this approach, the fracture criteria are related to the integral characteristics of the material and are described by the invariants of the stress tensor. However, this approach does not consider the physical aspects of the occurrence of local areas of plastic deformation, which ultimately means the impossibility of predicting the fracture, and, consequently, the resource of the structure. This is especially evident in the conditions of cyclic loading, when the material can fail at stresses well below the traditional «fatigue limit». In the current work, an approach is proposed that allows to save traditional methods of design and resource forecasting by expanding the scale of modeling. The paper introduces the concept of inherent stress concentration in any structurally heterogeneous medium as its inherent attribute. A universal algorithm for determining this characteristic is presented.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Statistical regularities of stress distribution in polycrystals;Ashikhmin;PNRPU Math. modeling of systems and processes,1995

2. Three-dimensional local stress analysis on grain boundaries in polycrystalline material;Kamaya;Int. J. Solid. Struct.,2007

3. Microstructure-sensitive computational modeling of fatigue crack formation;McDowell;Int. J. Fatigue,2010

4. How and why the S-N curve does not approach a horizontal asymptote;Bathias;Int. J. Fatigue,2001

5. An investigation of premature fatigue failures of gas turbine blade;Maktouf;Engineering Failure Analysis,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3