A Skin Cancer Detection Interactive Application Based on CNN and NLP

Author:

Gong Xuping,Xiao Yuting

Abstract

Abstract Skin cancer is the most common cancer with several different types. According to current estimations, one in five Americans will develop skin cancer in their lifetime. Therefore, early diagnosis and treatment of it is of crucial significance. Several advanced image processing methods have been applied to predict skin cancer. However, few researchers utilize those methods to build an interactive application. In this work, we implemented an interactive skin cancer diagnosis website, combining the convolutional neural network (CNN) and natural language processing (NLP) technology. The neural network model uses four convolutional layers and dense layers respectively to improve the accuracy. Two max-pooling layers were used to reduce redundant information. To address the severe overfitting problem, we chose to utilize the batch normalization along with dropout layers. Based on our results, 0.9935 in accuracy and 0.0225 loss is realized for training data, and accuracy of 0.8393 and 0.6648 loss for testing data. Natural language processing (NLP) was used to implement a chatbot for interaction with users. We crawled skin cancer related questions and answers from Quora and used them to train our chatbot. Lastly, we combined CNN and NLP to build an interactive skin cancer diagnosis website. VUE.js and Django were used to build the front-end and back-end of our website. These results offer a guideline for combining artificial intelligence with not only medicine but also interactive network, which enables people to get medical care more easily.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Breast cancer classification using machine learning;Amrane,2018

2. Semantic Segmentation of Intracranial Hemorrhages in Head CT Scans;Qiu,2019

3. Artificial neural network based detection of skin cancer;Jaleel,2012

4. Skin cancer diagnosis based on optimized convolutional neural network;Zhang;Artificial intelligence in medicine,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin cancer detection with MobileNet-based transfer learning and MixNets for enhanced diagnosis;Neural Computing and Applications;2024-08-28

2. Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis;Future Internet;2024-06-23

3. Simplifying Table Parsing using TAPAS API and Django web Application: Review;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

4. Light-Weight SA-BNN: High-Precision Olfactory Recognition of Binary Neural Networks;Lecture Notes in Computer Science;2024

5. NLP-Powered Oncology Patient Summary;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3