Feature Selection and Rule Extraction Based on Variable Precision Rough Set

Author:

Kesuma I A,Zarlis M,Nababan E B

Abstract

Abstract Main factors in feature selection is dimensionality in data and decision making on partial information handling as precision classification errors. This study will demonstrate the feature selection using the rough set method, especially in handling missing information along with an ambiguous decision system with a precision variable-based approach to finding significant features and extracting the required rules. The experiment was carried out with 12 Dermatology datasets from the UCI Machine Learning Repository consisting of 11 conditional attributes and a decision variable. The experimental results show the results of the dominant conditional feature selection of 45% of the overall existing conditional features, along with more concise rules based on selected features.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. Rule Induction Based on an Incremental Rough Set;Fan,2009

2. A Feature Transformation Methods in Data Mining IEEE Transaction on;Kusiak;Electronics Packaging Manufacturing,2001

3. Rough Set;Pawlak;Int. J. of Comp. and Information Science,1982

4. Variable Precision Rough Set Model;Ziarko;J. of Comp. System and Science,1993

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Framework for Optimizing The Performance of Fuzzy Grid Partition for Rules Generation;2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM);2022-10-19

2. Covering-based generalized variable precision fuzzy rough set;Journal of Intelligent & Fuzzy Systems;2022-09-22

3. Taxonomy of rough set approaches for rule generation;2021 International Conference on Engineering and Emerging Technologies (ICEET);2021-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3