Fast divergence-conforming reduced basis methods for stationary and transient flow problems

Author:

Fonn E,van Brummelen H,Kvamsdal T,Rasheed A

Abstract

Abstract Reduced basis methods (RB methods or RBMs) form one of the most promising techniques to deliver numerical solutions of parametrized PDEs in real-time with reasonable accuracy [1]. For the Navier-Stokes equation, RBMs based on stable velocity-pressure spaces do not generally inherit the stability of the high-fdelity method. Common techniques for working around this problem (e.g. [2]) have the effect of deteriorating the performance of the RBM in the performance-critical online stage. We show how divergence-free reduced formulations eliminates this problem, producing RBMs that are faster by an order of magnitude or more in the online stage. This is most easily achieved using divergence-conforming compatible B-spline bases, using a transformation that can maintain the divergence-free property under variable geometries. See [3] for more details. We also demonstrate the flexibility of RBMs for non-stationary flow problems using a problem with two stages: an initial, finite transient stage where the flow pattern settles from the initial data, followed by a terminal and infinite oscillatory stage characterized by vortex shedding. We show how an RBM whose data is only sourced from the terminal stage nevertheless can produce solutions that pass through the initial stage without critical problems (e.g. crashing, diverging or blowing up).

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3