A survey on topological solitons in planar nonlinear Dirac models

Author:

Dikole R

Abstract

Abstract In this text, we review tardyonic and tachyonic planar Dirac models with several cubic nonlinearities such as the Kerr, Soler and massive Thirring nonlinearities. These models have relevance in a newly discovered class of solids named topological insulators and have been shown to exhibit topological properties such as the Berry phase and Chern number. Moreover, nonlinear Dirac models have vortex solutions and edge state solitons. As understood in quantum mechanics that a Hamiltonian must yield real eigenvalues or dispersion relation, we argue that Dirac equations in the tachyonic case are valid when studied in non-vanishing backgrounds because this gets rid of the complexity in the dispersion relation.

Publisher

IOP Publishing

Reference13 articles.

1. The electronic properties of graphene;Castro Neto;Rev. Mod. Phys.,2009

2. Nonlinear topological photonics;Smirnova;Applied Physics Reviews,2020

3. Colloquium: Topological insulators;Hasan;Rev. Mod. Phys.,2010

4. Topological photonics;Ozawa;Rev. Mod. Phys.,2019

5. Photonics meets topology;Xie;Opt. Express,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3