Urban Intersection Simulation and Verification via Deep Reinforcement Learning Algorithms

Author:

Liao Hanlin

Abstract

Abstract Reinforcement Learning (RL) uses rewards to have iteration and update the next state for training in an unknown and complex environment. This paper aims to find a possible solution for the traffic congestion problem and train four Deep Reinforcement Learning (DRL) algorithms to verify the urban intersection simulation environment in the different discussed dimensions, including practicability, efficiency, safety, complexity, and limitation. The experiment result shows that the four DRL algorithms are efficient in the RL intersection simulation. This paper has succeeded in verifying this RL environment in the comparison and expands the experiment with three conclusions: The agent can train by Deep Q-network(DQN), DoubleDQN, DuelingNet DQN, and Categorical DQN algorithms to be practical and efficient. As the experiment results show, DuelingNet takes less time to finish the training, and Categorical DQN has reduced the collision rate after a while. However, the RL simulation environment lacks complexity, causing limitations in solving more complex problems, including the lack of simulation of pedestrian behaviors and the prediction of emergency events. This paper recommends creating a more complex urban intersection simulation that includes exceptional cases for the RL agent environment and more traffic pressure for the intersection to improve the faster and safer response in future automatic driving.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3