On durability of a hydraulic fracture filled with proppant particles

Author:

Shelukhin Vladimir V.,Sannikova Anastasiya S.

Abstract

Abstract On the basis of conservation laws and basic principles of thermodynamics, a mathematical model is developed for flows of a two-phase granular fluid. The phases consist of a viscoplastic granular Bingham fluid and a viscous Newtonian fluid. As an application, one dimensional flows are studied in a channel to address the stability of the proppant pack which fills a hydro-fracture. We find correlations between the phase flow rates and the pressure gradient. Such correlations are similar to a Darcy law. We determine a criterion for the initiation of motion of a granular phase in a porous medium. Given a yield stress of the granular phase, it is proved that this phase does not flow if either the pressure gradient or the channel thickness is small. The phase flow rates are studied numerically at various input parameters such as the phase viscosities, yield stresses and etc. The factors slowing down the penetration of the solid phase into the porous medium are revealed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3