Fusion Hindrance and Pauli Blocking in 58Ni + 64Ni

Author:

Stefanini A.M.,Montagnoli G.,Fabbro M. Del,Colucci G.,Čolović P.,Corradi L.,Fioretto E.,Galtarossa F.,Goasduff A.,Grebosz J.,Heine M.,Jaworski G.,Mazzocco M.,Mijatovic T.,Szilner S.,Bajzek M.,Brugnara D.,Siciliano M.,Zanon I.

Abstract

Abstract 58Ni +64Ni is the first case where the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced, in a very well known experiment by Beckerman et al., by comparing with the two systems 58Ni +58Ni and 64Ni +64Ni. Subsequent measurements on 64Ni +64Ni showed that fusion hindrance is clearly present in this case. On the other hand, no indication of hindrance can be observed for 58Ni +64Ni down to the measured level of 0.1 mb. In the present experiment the excitation function has been extended by two orders of magnitude downward. The cross sections for 58Ni + 64Ni continue decreasing very smoothly below the barrier, down to ≃1 μb. The logarithmic slope of the excitation function increases slowly, showing a tendency to saturate at the lowest energies. No maximum of the astrophysical S-factor is observed. Coupled-channels (CC) calculations using a Woods-Saxon potential and including inelastic excitations only, underestimate the sub-barrier cross sections by a large amount. Good agreement is found by adding two-neutron transfer couplings to a schematical level. This behaviour is quite different from what already observed for 64Ni+64Ni (no positive Q-value transfer channels available), where a clear low-energy maximum of the S-factor appears, and whose excitation function is overestimated by a standard Woods-Saxon CC calculation. No hindrance effect is observed in 58Ni+64Ni in the measured energy range. This trend at deep sub-barrier energies reinforces the recent suggestion that the availability of several states following transfer with Q >0, effectively counterbalances the Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3