Time Varying RF Phase Noise for Longitudinal Emittance Blow-up

Author:

Albright S,Quartullo D

Abstract

Abstract RF phase noise was shown to be effective for controlled longitudinal emittance blow-up in the Proton Synchrotron Booster (PSB) at CERN during beam tests in 2017, with further developments in 2018. At CERN, RF phase noise is used operationally in the Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC). In this paper we show that it is suitable for operation with a variety of beam types in the PSB. In the PSB the synchrotron frequency changes by approximately a factor 4 during the 500 ms acceleration ramp, requiring large changes in the frequency band of the noise. During 2018, a new method of calculating the noise parameters has been demonstrated, which gives upper and lower bounds to the noise frequency band that are smoothly varying through the ramp. The new calculation method has been applied to operational beams accelerated in both single and double RF harmonics, the final results are presented here.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. Longitudinal emittance blow-up in the LHC;Baudrenghien,2011

2. Study of controlled longitudinal emittance blow-up for high intensity LHC beams in the CERN SPS;Papotti,2008

3. The resonant theory of longitudinal emittance blow-up by phase modulated high harmonic vavities;Balandin;Particle Accelerators,1991

4. Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB;Quartullo,2017

5. Uniform bunch formation by RF voltage modulation with a band-limited white signal;Toyama;Nucl. Instrum. Methods Phys. Res. A,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beam longitudinal dynamics simulation studies;Physical Review Accelerators and Beams;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3