Computations of cross-correlation functions on a single board Raspberry Pi computer

Author:

Faerman V A,Shvetsov M P,Tsavnin A V

Abstract

Abstract The paper discusses the implementation of correlation algorithm for time delay estimation on a Raspberry Pi single-board computer. The implemented correlation algorithm is based on Fourier transform. In the course of the study, we applied two alternative solutions for the software implementation of discrete Fourier transform. The first solution stands on FFTW library and uses general-purpose quad-core ARM Cortex A53 processing unit. The alternative method uses VideoCore IV graphic processing unit and is implemented via firmware GPU_FFT library. We have performed a computational experiment on a Raspberry Pi 3B to determine which solution is more preferable for the implementation of correlator. After a comparative study we figured out that estimated processing time is highly dependent on computations parameters and input signals. For small FFT window sizes CPU is proved to be a preferable option. However, for large FFT windows GPU allows significantly accelerating the computations. At some point, you can achieve even better performance by using batching and GPU for direct FFT and CPU for inverse FFT. According with the results, we have concluded that both alternatives have their own potential advantages and particular drawback. We also establish, that Raspberry Pi 3 B computer with HiFiberry extension can be used as a real-time correlator for audio signals.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Highlights of statistical signal and array processing;Juang;IEEE Signal Processing Magazine,1998

2. Comparative study of basic time domain time-delay estimators for locating leaks in pipelines;Faerman;International Journal of Networked and Distributed Computing,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel computation to bidimensional heat equation using MPI/CUDA and FFTW package;Frontiers in Computer Science;2024-01-11

2. Frappe: fast fiducial detection on low cost hardware;Journal of Real-Time Image Processing;2023-10-24

3. Case of Discrete-Event Simulation of the Simple Sensor Node with CPN Tools;2022 International Siberian Conference on Control and Communications (SIBCON);2022-11-17

4. Implementation of vibration signals receiving unit on Raspberry single-board computers;IOP Conference Series: Materials Science and Engineering;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3