Development of the Sequential Voids Creation Approach in Axisymmetric Forming Dies

Author:

Andrianov I K

Abstract

Abstract The study deals with the problem of topological optimization of forming dies with a limitation on fatigue strength. As a model of a stamp, a typical geometric configuration of stamps for the manufacture of parts of the " cup " type is considered. The algorithm for finding the optimal topology is proposed to be built separately in the internal areas under the stamp flanges and under the bottom of the "cup" of forming. Mathematical regularities are presented, according to which elements that fall into the area of predicted removal have a very small elastic modulus, which is widely used in topological optimization methods, then the stress state level is analyzed according to the fatigue strength curve. In the area of the flanges, there is a "build-up" of the mass according to the quadratic law with a variation in the depth of removal of the material. In the area of the bottom of the " cup " of forming, a step-by-step addition of rod elements is proposed until the level of the stress state meets the specified restrictions. Thus, this study is a modification of the topological optimization method. The novelty of the research lies in the construction of a new geometric scheme for determining the area of stored and deleted elements. The results of the study can be further developed in the development of methods for effective redistribution of material, as well as significantly reduce the material costs for the production of metal forming dies.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference32 articles.

1. Expanding The Range Of Dies For Billet Production;Filina;Russian Engineering Research,2019

2. Wearable Healthcare Device For Elderly Person;Gupta;Lecture Notes in Networks and Systems,2021

3. Theory of intermittent cutting. Description of tool exit from the blank;Bolshakov;Russian Engineering Research,2018

4. Effects of the die inlet angle and axial feed on rotary swaged ti-6al-4v alloy rods;Ta;Lecture Notes in Networks and Systems,2020

5. Influence of tool geometry on the stress–strain state of pipe in expansion by a shaped draw bar;Bezukladnikov;Russian Engineering Research,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3