Analysis and Development Potential of Predictive Models for Energy Flows of Autonomous Hybrid Energy Systems

Author:

Berdonosov V D,Vasilev G V,Zhivotova A A

Abstract

Abstract The article is devoted to the analysis and development potential for predictive models of energy flows of autonomous hybrid energy systems. The article considers the results of the analysis in the form of a morphological table and TRIZ–evolutionary map. The research defined the most promising in predicting energy flows are hybrid models that include more than one architecture. For example, DCNN + LSTM or MLP + LS–SVR. The authors intend to continue research in the direction of creating predictive models of wind energy flows for autonomous hybrid energy systems.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference32 articles.

1. Decentralized optimal control of a microgrid with solar PV, BESS and thermostatically controlled loads;Zhuo;Energies,2019

2. A data–driven short–term forecasting model for offshore wind speed prediction based on computational intelligence;Panapakidis;Electronics (Switzerland),2019

3. Multiple–input deep convolutional neural network model for short–term photovoltaic power forecasting;Huang;IEEE Access,2019

4. Next–day prediction of hourly solar irradiance using local weather forecasts and LSTM trained with non–local data;Jeon;Energies,2020

5. Performance improvement of artificial neural network model in short–term forecasting of wind farm power output;Medina;J. of Modern Power Systems and Clean Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3