Determination of angular stiffness coefficient of the annular seal by experiment-calculation

Author:

Gorovoy S,Golovchenko G,Dumanchuk M

Abstract

Abstract Hydrodynamic forces in annular seals of centrifugal pumps create a significant effect on the vibrational activity of the rotor as a whole. Theoretical and experimental studies of various authors made it possible to establish the structure of hydrodynamic forces and determine the magnitude of the coefficients of radial forces. The authors of this work obtained quantitative load characteristics of the rotor in an annular seal at specially created laboratory experimental stands at various pressure drops and significant angles of misalignment of the rotor axis relative to the seal axis. Static experiments were also conducted with annular seals of various lengths with a constant differential pressure of the liquid and a fixed angle of misalignment of the rotor axis relative to the axis of the annular seal. The given misalignment angle was obtained as a result of the action of various external forces on the rotor. In addition to static experiments, dynamic rotor tests were carried out. Experimentally obtained amplitude - frequency characteristics of the forced radial - angular oscillations of the rotor, which is dynamically mounted in two symmetrical annular seals. From the experimental characteristics, the critical frequency of the rotor angular oscillations in the seals was determined. According to theoretical formulas, taking into account the value of the coefficient of angular stiffness of the annular seal, the frequency of the natural angular oscillations of the rotor in the annular seals was calculated. A comparison of theoretical and experimental values indicates their good quantitative agreement.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3