Integrated Simulation Research of Multi-natural Energy-driven Unmanned Surface Vehicle

Author:

Chen Ao,Chen Tianding,He Hong,Wang Hui,Fan Yimei,Yu Xin

Abstract

Abstract In response to the limitations of existing unmanned surface vehicles in complex marine environments, where they often fail to meet the requirements for extended endurance, broad operational range, offshore missions, and prolonged operational durations, an autonomous Unmanned Surface Vehicle (NUSV) has been designed and developed. The NUSV is propelled by wind, solar, and wave energy sources. Concerning wind energy, a micro wind energy storage mechanism based on a spiral spring has been designed to enable power generation in low-wind conditions. A wave energy transmission device, complete with a dynamic model, has been devised for wave energy. This device converts torque generated from wave action in different directions into a unified torque, providing continuous power to drive the generator. Solar energy is harnessed using Maximum Power Point Tracking (MPPT) algorithms to ensure optimal operation of the solar panels. The electrical energy generated from these three natural sources is stored using Pulse Width Modulation (PWM) and DC-DC Boost converters. A programmable logic controller manages and allocates this stored electrical energy for the NUSV’s equipment, including underwater propulsion systems, surface cameras, laser radar, GPS, and other electronic devices. This integration of wind, solar, and wave energy sources enables the NUSV to meet power demands, allowing for long-duration operations at sea, extended offshore missions, wide operational ranges, and prolonged mission durations.

Publisher

IOP Publishing

Reference27 articles.

1. Analysis of the application and development of integrated electric power technology for unmanned ships;Wang;Chinese Journal of Ship Research,2022

2. Key technologies and future development trends of unmanned surface vessels (in Chinese);Nie;Marine Equipment/Materials and Marketing,2022

3. Development and missions of unmanned surface vehicle;Yan;Journal of Marine Science and Application,2010

4. Energy management strategy of hybrid ship based on deep reinforcement learning (in Chinese);Chen;China Measurement and Test,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3