New measuring system for locating firearm projectiles in the human body based on eddy currents and GMI sensors

Author:

Seixas V,Hall Barbosa C,Costa Monteiro E

Abstract

Abstract Noninvasive magnetic mapping for locating non-ferromagnetic metallic foreign bodies, such as firearm projectiles, has a promising application for guiding accurate surgical removals. The strategy consists of inducing eddy currents in the metallic object by applying an external alternating magnetic field. A secondary magnetic field generated by the induced currents in the foreign body can be detected by a high-sensitivity transducer. Previously proposed systems presented constraints to the measurement capability of the transducer imposed by the primary magnetic field interference on their sensing elements. Overcoming these limitations, this work proposes a new configuration of the system that decouples the excitation and measuring stages, arranging their elements symmetrically to generate a spatial distribution of the field lines in such a way that adequate magnetic flux density levels are produced in the region of the foreign body, with values nearly not-detectable at the sensor location. Thereby, the secondary field generated by the induced eddy currents can be amplified, allowing the detection of smaller fragments located at greater depth distances from the skin. The measuring system concept, the spatial distribution of the primary and secondary magnetic fields, and the new approach’s performance to localize foreign bodies are presented.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Locating steel needles in the human body using a SQUID magnetometer;Costa Monteiro;Phys Med. Bio.,2000

2. Comparison of the sensitivity for detecting foreign bodies among conventional plain radiography, computed tomography and ultrasonography;Aras;Dentomaxillofacial Radiology,2010

3. Improvement of a technique for localization of steel needles in humans using a SQUID magnetometer;Barbosa;IEEE Trans. App Sup,2001

4. Metrological Reliability of Medical Devices;Costa Monteiro;Journal of Physics: Conference Series,2015

5. Ring shaped magnetic field transducer based on the GMI effect;Pompéia;Meas. Sci. Technol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3