Assessing the impact of copper wools on a phase change material-based TES tank prototype

Author:

Ribezzo A,Morciano M,Zsembinszki G,Risco Amigo S,Mani Kala S,Borri E,Bergamasco L,Fasano M,Chiavazzo E,Cabeza L F

Abstract

Abstract Phase Change Materials (PCMs) stand out as a promising solution within the current array of Thermal Energy Storage (TES) technologies, thanks to their superior energy storage capacities (compared to sensible solutions) and technological readiness. Nonetheless, the limited thermal conductivity of these materials may lead to incomplete phase transitions during use, resulting in a decrease in their effective energy storage capabilities. The major solutions to mitigate this issue that are present in literature either require a significant modification in the heat exchanger design (e.g. by fins) or are costly and still lack robustness and reliability (e.g. by additivities). In this study, the use of copper wools is proposed as fillers within a PCM-based heat exchanger prototype, and the assessment of its impact on the heat transfer behaviour of the material is evaluated by performing charging and discharging processes. This type of inclusion was chosen as it is relatively cheap, it can be implemented within an already existing heat exchanger, and it does not suffer from segregation. Two different wools were tested in two configurations, thus resulting in five test cases (four containing the wools and one containing solely PCM). The promising results, especially the remarkable decrease in the time needed for the complete solidification of the PCM within the tank (up to 67%), open the opportunity to additional numerical analyses regarding different configurations and/or materials, thus possibly targeting further optimizations in terms of the specific energy density and the specific power density.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3