Exploring the potential and challenges of phase change materials in future heat storage systems via computations and experiments

Author:

Carnie J T,Hardalupas Y,Sergis A

Abstract

Abstract The current work describes computational and experimental efforts to enable new heat storage technologies. Approximately 50% of the energy consumed globally is used to generate and manage heat. This is still predominantly acquired from the combustion of fossil fuels, consequently generating just over 40% of the total global CO2 emissions. To achieve a sustainable future, there is a need for sustainable, decarbonised and dependable energy sources. Heat storage is a key technology that could help achieving this goal. Recently published work by the current authors has shown the importance of heat storage in decarbonising heating (and cooling) of buildings using phase change materials (PCMs). The black-box approach followed evaluated the energetic, cost, and environmental impacts of a novel concept PCM storage scheme with microgeneration. The results obtained showed that this system had advantages over current and future competing heating technologies. However, PCM technology remains at low technological readiness levels because of the lack of understanding of the complex heat transfer physics associated with their phase change transition. For example, understanding and characterizing the propagation of the solid-liquid front during charging and discharging in such heat storage modules will be important in predicting and optimising their performance. In the current work, computations have been performed to understand and optimise the effects of container geometry and size on the charging and discharging heat flux profiles of a simple heat storage module. Furthermore, fundamental experiments have also been implemented to identify the complex governing mechanisms of heat transfer and storage in such materials during transient operation.

Publisher

IOP Publishing

Reference9 articles.

1. Decarbonising building heat and cooling: Designing a novel, interseasonal latent heat storage system;Carnie;Renew. Sustain. Energy Rev. A,2024

2. Review on sodium acetate trihydrate in flexible thermal energy storages: Properties, challenges and applications;Wang;J. Energy Storage,2021

3. Supercooling salt hydrates: Stored enthalpy as a function of temperature;Sandnes;Sol. Energy,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3