Study of turbulent wavy annular flow inside a 3.4 mm diameter vertical channel by using the Volume of Fluid method in OpenFOAM

Author:

Zanetti E,Berto A,Bortolin S,Magnini M,Del Col D

Abstract

Abstract In annular downward flow, an annular liquid film flows at the perimeter of the channel pushed down by the gravity force and by the shear stress that the vapor core exerts on it. Depending on the working conditions, the vapor-liquid interface can be flat or rippled by waves. The knowledge of the liquid film thickness is very important for the study of annular flow condensation because the thermal resistance of the liquid is often the most important parameter controlling the heat transfer. A new approach for the simulation of annular flow is here proposed using an in-house developed transient solver based on the Volume of Fluid (VOF) adiabatic solver interIsoFoam available in OpenFOAM. With the VOF method, in addition to the standard set of equations (continuity and momentum), a transport equation related to the advection of the volume fraction scalar field has to be solved. The numerical setup consists of 2D axisymmetric domain. An adaptive mesh refinement (AMR) method is added to the solver to better capture the interface position. The k-ω SST model is used for turbulence modelling in both the liquid and vapor phases and a source term (whose magnitude is controlled by a model parameter named B) is included in the ω equation to damp the turbulence at the interface.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3