Subgrid moving contact line model for direct numerical simulations of bubble dynamics in pool boiling of pure fluids

Author:

Nikolayev Vadim S.,Wei Linkai,Bois Guillaume

Abstract

Abstract This contact line vicinity model is conceived as a subgrid model for the DNS of bubble growth in boiling. The model is based on the hydrodynamic multiscale theory and is suitable for the partial wetting case. On the smallest length scale (distance from the contact line) ∼ 100 nm, the interface slope is controlled by the Voinov angle. It is the static apparent contact angle (ACA) that forms due to evaporation, similarly to previous models neglecting the contact line motion. The calculation of the Voinov angle is performed with the generalized lubrication approximation and includes several nanoscale effects like those of Kelvin and Marangoni, vapor recoil, hydrodynamic slip length and interfacial kinetic resistance. It provides the finite values of the heat flux, pressure and temperature at the contact line. The dynamic ACA is obtained with the Cox-Voinov formula. The microscopic length of the Cox-Voinov formula (Voinov length) is controlled mainly by the hydrodynamic slip. The integral heat flux passing through the contact line vicinity is almost independent of the nanoscale phenomena, with the exception of the interfacial kinetic resistance and is mostly defined by the dynamic ACA. Both the dynamic ACA and the integral heat flux are the main output parameters of the subgrid model, while the local superheating and the microscopic contact angle are the main input parameters. The model is suitable for the grid sizes > 1 µm.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3