A hybrid atomistic-continuum framework for multiscale simulations of boiling

Author:

Gennari Gabriele,Smith Edward R.,Pringle Gavin J.,Magnini Mirco

Abstract

Abstract Boiling is a multiscale physics process where the nucleation of vapour bubbles occurs due to molecular-scale interactions between the fluid and a heated wall, but it also depends on the larger-scale hydrodynamics and thermal boundary layers determined by the outer system boundary conditions. Modelling boiling from the nanometre up to the millimetre scales at which bubble departure occurs is not possible via state-of-the-art simulation methods: Molecular Dynamics (MD) simulations can capture nucleation from first principles but are limited to nanometre scales due to their computational cost, whereas computational fluid dynamics (CFD) simulations based on the continuum Navier-Stokes equations cannot capture nucleation. Here, we present a novel multiscale simulation method which merges MD and CFD descriptions into a single modelling framework, where MD resolves the near-wall region where molecular interactions are important, and a CFD solver resolves the bulk flow. We model the progressive heating of a Lennard-Jones fluid via contact with a solid wall until a vapour bubble nucleates in the MD region of the domain and grows by entering in the CFD domain. Our results show that an incompressible CFD flow model based on the Volume Of Fluid method with interphase mass transfer calculated via the Hertz-Knudsen-Schrage equation is sufficient to obtain seamless coupling of phase fraction, velocity and temperature fields, with the hybrid MD-CFD framework yielding bubble dynamics closely matching those of MD alone.

Publisher

IOP Publishing

Reference12 articles.

1. Surface topography effects on pool boiling via non-equilibrium molecular dynamics simulations;Lavino;Langmuir,2021

2. Pool boiling review: Part I – Fundamentals of boiling and relation to surface design;Mahmoud;Therm. Sci. Eng. Progr.,2021

3. A unifying criterion of the boiling crisis;Zhang;Nat. Commun.,2023

4. The wall heat flux partitioning during the pool boiling of water on thin metallic foils;Zupancic;Appl. Therm. Eng.,2022

5. CPL library - A minimal framework for coupled particle and continuum simulation;Smith;Comput. Phys. Commun.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3