Temperature forecasting for single-phase immersion cooling system based on machine learning

Author:

Pratheek S,Ashwin R S,Balaji C

Abstract

Abstract High-heat-flux-density data centres face significant thermal management challenges, particularly those for 5G and AI applications. Elevated processor temperatures lead to frequent thermal throttling and non-uniform thermal stresses, negatively impacting server performance and reliability. This highlights the need for effective thermal management strategies. Machine learning-based temperature prediction algorithms have shown promise in proactively managing the thermal condition of the system. In his study, a Raspberry Pi 4 Model B+ was immersed in mineral oil to simulate the workloads based on cryptography, Fast Fourier Transform (FFT) and data analytics. The discrete wavelet transform technique is used to mitigate the impact of noise interference in the experimental data. The results show that the attention-based LSTM encoder-decoder model (LSTM-ED-Attention) coupled with the entropy minimisation strategy outperformed the baseline LSTM encoder-decoder model by 22, 15 and 20% for prediction horizons of 10, 30 and 60 seconds, respectively.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3