Author:
Saktioto T,Ramadhan K,Soerbakti Y,Irawan D,Okfalisa
Abstract
Abstract
The discovery of the fiber Bragg grating (FBG) is an early milestone in developing optical fiber technology, such as optical communication to monitoring material health structures as sensors. For optical communication, the FBG components are capable of filtering functions. As a sensor, it has a high sensitivity immune to electromagnetic wave interference, is small in size, and is resistant to extreme environmental conditions. The sensitivity of the FBG sensor is obtained from the shift in the peak wavelength of each of the temperature and strain quantities. However, the performance of the FBG sensor can be improved by engineering the distribution of the refractive index on the grid with the apodization and chirp functions. Apodization is a technique to improve the performance of the FBG to eliminate noise, narrow the full width half maximum, lower the side lobes of the main lobe, and improve the spectrum ripple factor. Apart from apodization, the chirp function also affects the sensor sensitivity and the refractive index distribution on the grid. Numerical experiments were carried out in designing the FBG component as a sensor using Gaussian apodization and Topas (cyclic olefin copolymer) for several chirp functions. The results show that the Gaussian apodization Topas for all chirp functions as a strain sensor has the same sensitivity, namely 0.84 pm/μstrain while for temperature sensors with the highest sensitivity is obtained at cubic root chirp of 13.82857 pm/°C followed by square root chirp of 13.74286 pm/°C, quadratic chirp 13.71429 pm/°C, and linear chirp 13.4 pm/°C. The Bragg wavelength shift was greater for 1 °C than for the 1 μstrain.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献