Longan Leaves biomass-derived renewable activated carbon materials for electrochemical energy storage

Author:

Taer Erman,Tampubolon Desy Kristin Harida,Apriwandi ,Farma Rakhmawati,Setiadi Rahmondia Nanda,Taslim Rika

Abstract

Abstract Biomass-based energy conversion and storage applications have proven to be the most effective technology for practical and sustainable applications. However, their further development was hindered by poor electrode performance. Naturally, abundant biomass is a green alternative carbon source with many desirable properties. This study presents a relatively easy approach for the synthesis of activated carbon-based electrode materials derived from natural biomass with an emphasis on supercapacitor applications. The selected biomass waste is Longan leaves. The precursor was converted into activated carbon through ZnCl2 impregnation at three different concentrations in high-temperature pyrolysis. All activated carbon confirmed a good amorphous structure. Furthermore, oxidative compounds were also found to have an effect on their electrochemical properties. supercapacitor cells prepared in a two-electrode system exhibit high electro-capacitive properties with a specific capacitance of 169.83 F g−1 at a constant current density of 1.0 A g−1 in an aqueous electrolyte of 1 M H2SO4. Furthermore, the optimum energy density was found in LF0.5 samples as high as 19.04 Wh kg−1 at a maximum power density of 124.37 W kg−1.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3