Author:
Tangjitsomboon P,Ngamrungroj D,Mongkolnavin R
Abstract
Abstract
Particulate matters (PM) in air pollution have been known to be the cause of respiratory diseases. Many researchers have investigated methods of trapping the particulate matter. In this work, the trapping of smoke particles generated from a joss stick by using a dielectric barrier discharge (DBD) system operated under the atmospheric pressure condition was investigated. DBD system consists of an inner electrode which is made of aluminum wire filaments that are placed inside the acrylic cylindrical tube, and the outer electrode is made of metallic wrap around the tube. The electrodes were connected to a 50 Hz high voltage AC source which was adjusted to 0 V, 5kV, 7kV, and 10kV. A ventilating fan was used for draining the smoke particle from the joss stick through the inner electrode with an airflow velocity of 2.68 m/s. The effect of electric field and plasma trapping the smoke particles was investigated. Results from the experiment were further compared with a study by simulation. It was found that the smoke particle density measured by applying an electric potential difference of 0 V and 5 kV was similar; both conditions showed the highest smoke density values. On the other hand, when the electric potential difference was adjusted to 7 kV and 10kV, it was found that the smoke particles density decreased by 90%. The experiment also illustrated when the electric potential difference was increased high enough such that plasma was produced at 7 kV and 10 kV, the smoke particle density released from the tube was similar. Nevertheless, when comparing the mass of particles collected from the inner electrode with the plasma condition, it was found that the mass collected increased more than the operating condition with an electric potential difference of 0 kV and 5 kV without plasma.
Subject
General Physics and Astronomy