Big data analysis method based on time series temperature field data of substation transformer

Author:

Zhang Yubo,Lu Yufeng,Zhang Wei,Liu Xu

Abstract

Abstract Transformers are one of the main electrical equipment in the power system, and their operating status directly determines the safety, stability, and reliability of the power supply in the power system. The temperature or temperature rise of a transformer is the most important technical parameter that describes the operating status (accidents, faults, and abnormal operation) of the transformer. The following mainly introduces that the monitoring area is gridded by modeling the three-dimensional reality of the transformer, and then the collected infrared temperature data is accurately mapped into the monitoring grid in three dimensions to form the patrol time sequence temperature big data. Through trend analysis, temperature difference and temperature rise analysis, temperature field gradient analysis and other models, the equipment temperature hidden danger detection focusing on prevention is realized.

Publisher

IOP Publishing

Reference9 articles.

1. Transformer Fault Identification Method Based on Multi-Source Data;Li;IET Conference Proceedings,2022

2. Multi granularity modeling and simulation analysis of transformers based on digital twins;Long,2023

3. Data Driven Transformer Thermal Model for Condition Monitoring;Doolgindachbaporn;IEEE Transactions on Power Delivery,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3