Data Restoration of dissolved gas content in transformer oil based on the CS-SVR model

Author:

Wang Nana,Li Jianqiu,Li Wenyi,Wu Xiaohong,Jiang Xiaolin

Abstract

Abstract Accurate monitoring of the dissolved gas content in transformer oil is crucial for transformers’ safe and stable operation. The early identification for detecting potential power transformer failures is necessary for the stability of an electrical grid. Dissolved gas analysis is an essential technology in transformers diagnosing insulation faults. Missing dissolved gas data can directly impact the reliability of monitoring results of a transformer. This study presents a data plug-in model based on support vector regression (SVR) to restore missing dissolved gas data. To further improve the accuracy of data restoration, the cuckoo search algorithm (CS) is used for optimizing SVR parameters. By verifying H2 and C2H4, the CS-SVR model demonstrates superiority over other plug-in procedures in repairing dissolved gas data.

Publisher

IOP Publishing

Reference10 articles.

1. Power transformer health condition evaluation: A deep generative model;Islam;Electr. Pow. Syst. Res.,2023

2. Causes of transformer failures and diagnostic methods-A review;Christina;Renew. Sust. Energ. Rev.,2018

3. A novel deep recurrent belief network model for trend prediction of transformer DGA data;Qi;IEEE Access,2019

4. Dealing with missing values in data;Kaiser;J. Syst. Intell.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3