Transformer noise prediction method based on CEEMDAN-VMD-TCN

Author:

Liu Ping,Zhang Ying,Shi Jianbo,Guo Shinan

Abstract

Abstract To solve the problem of weak precision of traditional prediction methods in transformer noise prediction, a novel prediction approach by CEEMDAN-VMD-TCN is presented in this paper. Firstly, the noise sequence is preliminarily disaggregated by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). Then, the fuzzy entropy value of each modal component is calculated. The genetic algorithm is adopted to find the optimum parameter group of Variational Mode Decomposition (VMD), with which the components with higher fuzzy entropy values are decomposed again by VMD. Finally, the decomposed components and related feature sequences are input into the Temporal Convolutional Network (TCN) for prediction. The prediction results are superimposed and reconstituted to yield the end results. The results show that the proposed method has greater prediction accuracies compared with other prediction ways.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3