Numerical Study on the Efficiency of the Point Smoke Exhaust System in V-shaped Urban Underground Road Tunnel

Author:

Kang Siyan,Li Junmei,Qiao Yaxin,Qi Zhao,Lu Huimin,Ouyang Li

Abstract

Abstract In order to study the exhaust effect of the point smoke exhaust system in V-shaped urban underground tunnel with different structures, effects of the slope differences on both sides of the slope changing point and the operating mode of the exhaust vent on the smoke spread distance, temperature at the height of 2 m above the road and the ceiling temperature were studied by the numerical method. The research results show that for the symmetric V-shaped tunnel, smoke can be controlled in the required range, but for asymmetric V-shaped tunnel with the slope difference on both sides, smoke cannot be easily controlled, ventilation supply is needed to improve the smoke exhaust efficiency. Point smoke exhaust system cannot effectively reduce the maximum temperature of the ceiling above the fire. When the fire source power is large, for the symmetrical V-shaped tunnel with a small slope, some fire prevention measures must be taken to protect the ceiling partition. For the asymmetric V-shaped tunnel, two exhaust vents opened on the small slope side and four opened on the large slope side are suggested for the occupant safe evacuation in tunnel.

Publisher

IOP Publishing

Reference13 articles.

1. Experimental study on temperature decay and smoke control in tunnel fires with combination of multi-point smoke exhaust and longitudinal ventilation;Jie;Int. J. Therm. Sci.,2023

2. The International Forum of Fire Research Directors: A Position Paper on Future Actions for Improving Road Tunnel Fire Safety;Ingason;Fire. Safe. J.,2006

3. A Numerical Study on the Feasibility and Efficiency of Point Smoke Extraction Strategies in Large Cross-section Shield Tunnel Fires Using CFD Modeling;Hehua;J. Loss Prev. Process Ind.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3