Materials Behaviour Analysis of 3D Printed Brass-PLA Filament

Author:

Rajan Dinesh,Samykano M.,Suraparaju S. K.,Moorthy K.,Kadirgama K.,Ramasamy D.,Pandey A. K.

Abstract

Abstract The current study aims to bridge a crucial gap in existing research, potentially paving the way for a groundbreaking transformation in the development and application of PLA/Brass composites within diverse industries such as aerospace, automotive, consumer goods, and medical devices. The primary objective of this research is to assess the mechanical properties of a composite material made up of Polylactic Acid (PLA) and Brass, produced using Fused Deposition Modelling (FDM) 3D printing technology. Brass, renowned for its exceptional mechanical properties, has been integrated into PLA to form this composite material. The study employs various analytical techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray Spectroscopy (EDX), to scrutinize the chemical and physical characteristics of the PLA/Brass composite. This research revolves around exploring the impact of different printing parameters on the mechanical behavior of the printed specimens. The investigation delves into aspects such as tensile strength, compression resistance, bending properties, and impact resistance. To achieve this, test specimens with varying compositions have been produced using a Raise3D N2 Plus FDM 3D printer, with careful manipulation of printing parameters such as layer height and printing speed. The compositional variations range from 15% wt. to 80% wt., with layer height values spanning 0.25 mm, 0.30 mm, and 0.35 mm, and printing speeds ranging from 20 mm/s to 40 mm/s. The outcomes of this research have revealed the distinct influences of specific printing parameters on various mechanical properties. For example, in the context of tensile testing, it was observed that the combination of a layer height of 0.25 mm and a printing speed of 30 mm/s resulted in the highest elastic modulus. Similarly, the study provides crucial insights into optimizing PLA/Brass composite material properties through controlled additive manufacturing parameters, catering to diverse application requirements. Key findings include an elastic modulus of 0.870 GPa, ultimate tensile strength of 17.53 MPa, yield strength (0.2% offset) of 15.47 MPa, bending strength of 42.25 MPa, bending modulus of 3.679 GPa, compression strength of 33.46 MPa, compression modulus of 5.748 GPa, and energy absorption of 0.246 J. This study advances our knowledge of PLA/brass composite while also providing a chance to create innovative materials.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3