Evaluation of Stability and Enhancement of Nano Fluid Methods

Author:

Shaalan Z.A.,Hussein A.M.,Abdullah M.Z.,Noor M.M.

Abstract

Abstract Over the last ten years, there has been a substantial increase in research on nanofluids, and the findings indicate that these fluids are superior heat transfer fluids for application in engineering. The improved heat transfer is exclusively dependent on the thermal conductivity of the nanoparticles at constant particle volume concentrations and flow rates. By creating hybrid nanoparticles, one can change or vary the thermal conductivity of nanoparticles. Nanoscale particles with two or more separate components come together to form hybrid nanoparticles. Fluids made from hybrid nanoparticles are known as hybrid nanofluids. By utilizing more sophisticated materials, hybrid Nano fluids aim to significantly boost heat transmission. Results shows that the nanofluid stability is sensitive to environmental conditions including temperature, pH, and shear rate. It should be using surfactants, additives such as polymers and colloids, ultra-sonication, high shear mixing, applying magnetic field.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3