Mathematical Modelling of Stingless Bee Honey Dewatering using Low-Temperature Vacuum Drying with Induced Nucleation Bubbling

Author:

Ramli Ahmad Syazwan,Halim Faeeza Abdul,Halim Luqman Abdul,Basrawi Firdaus,Bakri Mohd Azwan Mohd

Abstract

Abstract Low-temperature vacuum drying with induced nucleation boiling (LTVD-NB) was developed to dewater heat-sensitive materials such as stingless bee honey (SBH). However, its performance can be further optimised to achieve an efficient LTVD-NB operation. The objective of this paper is to investigate the most fitting drying model for dewatering SBH and to develop a suitable mathematical drying model that can be used to predict and optimise dewatering SBH using LTVD-NB. Established experimental data was used to develop the mathematical model. The data result showed that the logarithmic model had the best fit for drying SBH using LTVD-NB as compared to other models based on the highest value of R 2 and the lowest Root mean square, RMSE and reduced chi-square, χ 2 values which are 0.999988, 7.87E-05, and 1.41E-08, respectively. The model was further regressed to obtain an optimised mathematical model to better predict an LTVD-NB operation to dewater SBH. In conclusion, an optimised drying model to describe the dewatering process of SBH using the LTVD-NB method was able to be developed based on the multiple regression analysis of the obtained experimental data. Therefore, the drying model can predict the efficiency of this process just by giving the temperature and surface roughness values as input information.

Publisher

IOP Publishing

Reference35 articles.

1. Lindungi kelulut untuk pembangunan lestari dan industri ‘super food’;Bernama,2021

2. Stingless bee foraging behavior and pollen resource use in oil palm and rubber plantations in Sumatra;Ramadani;J. Entomol. Indones.,2021

3. Oil Palm Economic Performance in Malaysia and R&D Progress in 2020;Ghulam Kadir,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3