Experimental testing of the effectiveness of novel hydrocyclones for separation of impurities in biofuels

Author:

Petrovsky E A,Bashmur K A,Kolenchukov O A,Kachaeva V A,Sinitskaya A Ye

Abstract

Abstract This paper investigates the potential sources of renewable energy, in particular biofuels. Biofuels tend to contain multiple harmful impurities that need to be separated if the biofuel is to have good energy performance, and the systems that run on it to produce electricity or heat are to operate more reliably. The paper discusses use of hydrocyclones as the most productive and reliable biofuel purification method. It dwells upon the factors that negatively affect separation of mixtures in a hydrocyclone, which are attributable to the complex hydrodynamics of the flow in such a unit. In order to eliminate these factors, the authors hereof have developed two hydrocyclone designs. An experimental test bench was designed and made to test these designs. Parts of the units were 3D printed from an environmentally friendly material. For testing, we used a biodiesel made from waste cooking oil with an impurity content of 23%. Experiments showed a maximum separation rate of 94.2%. The proposed solutions did improve the effectiveness of biodiesel mixture separation. These designs can be effectively used to separate non-homogeneous mixtures.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3