Orbital stability analysis of trajectories of highly nonlinear dynamic systems with feedback coupling

Author:

Annakulova G K

Abstract

Abstract Orbital stability and qualitative study of the oscillations of a highly nonlinear dynamic system with feedback coupling are considered. For a highly nonlinear dynamic system with feedback coupling that satisfies Liénard’s theorem (on the existence and uniqueness of a periodic solution), a complete study of the phase pattern of the system is conducted. Applying the Poincaré criterion, the conditions for the existence of limit cycles and their Lyapunov stability are determined. The diagrams of phase trajectories are constructed numerically using the Mathcad 15 software package. Limit cycles are established, which are consistent with the limit cycles obtained by the Poincaré method. The behavior of trajectories outside the limit cycles is investigated. Recurrent homogeneous Pfaff equations are obtained, which determine the behavior of the systems “at infinity”. It was determined that the infinitely distant point of the horizontal axis is the only singular point for these equations. Linear approximations of recurrent homogeneous equations are obtained, which make it possible to determine the nature of the singular points. It was found that the trajectories then wind like a spiral on the limit cycles. Images of trajectories on the phase plane outside the limit cycles for the cases of degrees of nonlinearity under consideration are constructed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Thermal Processes in Flow-Through Hydraulic Drives;Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3