Method of creation of a two-level neural network structure for solving problems in mechanical engineering

Author:

Volkov A,Varlamov O

Abstract

Abstract There is an industrial trend of increasing technological effectiveness of production and growing autonomy of factories, resulting in generation of huge amounts of raw data that can be used to improve efficiency and continuity of industrial plants operation. Big data collection, processing and analysis technologies are already being actively implemented. Further use of big data will help with a variety of tasks, such as optimization and process monitoring, quality control of equipment and produced parts, modeling and forecasting of the facility operation and other mechanical engineering challenges. A new method of creation of a two-level neural network structure is proposed, designed to solve a number of problems by training individual neural networks for each subset of data used in the task at hand. This method combines two levels of information processing: the first level of the neural network classifier and the second level, which includes several neural network analyzers. Depending on the specific subject area and the data sets available, it is possible to use the method to solve various problems in mechanical engineering. The method allows to add new neural network analyzers and expand the scope of application. The practical application of the method in solving the problem of text message sentiment analysis is shown and an example of the Python programming language software implementation of the two-level structure is given. Use cases for the two-level structure method in mechanical engineering tasks are proposed. In addition, the proposed method can be used as a part of the hybrid intelligent information system that includes mivar expert systems. Combining neural networks with mivar expert systems as part of a hybrid intelligent information system is a promising direction for the development of artificial intelligence for mechanical engineering.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty quantification for structural response field with ultra-high dimensions;International Journal of Mechanical Sciences;2024-06

2. Wideband Matching of Planar Three-Layer Dielectric Composite Media;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

3. The Robot-Guide for Indoor Navigation;2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3