A machine learning-based fault identification method for microgrids with distributed generations

Author:

Liu Yang,Zhang Shidong,Li Lisheng,Wang Shaorui,Lu Tianguang,Yu Haidong,Liu Wenbin

Abstract

The development of renewable energy sources such as solar and wind based on distributed generators are growing rapidly in the face of the global energy crisis. As a connection between distributed generation and the main grid, microgrids are also growing rapidly. However, due to the randomness and uncertainty of the output of the solar and wind power, as well as the bidirectional characteristic of current flow, the faults in microgrids are difficult to identify using the traditional fault detection methods. To address this problem, this paper proposes a machine learning-based fault identification method for microgrids. First, the modified K-means algorithm is implemented to cluster the voltage data. Then, FP-growth algorithm is using to extract the association rules. Third, the mini-batch gradient descent (MBGD) algorithm is using to train the fault identification model based on machine learning theory. To verify the validity of this method, a case study considering single-phase short-circuit fault and two-phase phase short-circuit fault is simulated. The method presented in this work is with a high accuracy according to the simulation results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Fault Identification of Photovoltaic Array Based on Machine Learning Classifiers;Badr;IEEE Access,2021

2. Research on Fault Prediction and Health Management Technology Based on Machine Learning;Liu;2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE),2019

3. Fault Identification in Power Network Based on Deep Reinforcement Learning;Li;CSEE Journal of Power and Energy Systems,2022

4. Implementation of Machine Learning for Fault Classification on Vehicle Power Transmission System;Alex Gong;IEEE Sensors Journal,2020

5. Application of Machine learning algorithms for Power transformer Internal faults identification;obulareddy,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3