Suppression Of Natural Convection And Radiation Heat Losses In Solar Cavity Receivers: A Novel Approach

Author:

Bello-Ochende T.

Abstract

Abstract The concentrating solar power technology has great potential to be used for energy production and it is a promising alternative to conventional fossil fuel-based energy technologies, such as coal power plants, due to the abundance of solar energy as an energy resource, as well as its minimal impact on the environment. The parabolic dish receiver assembly is one such promising concentrating solar power technology. It usually consists of a reflector in the form of a dish with a downward-facing receiver at the focus of the dish. A cavity receiver is used to maximise the absorption of the concentrated flux. However, the receiver is subjected to environmental variations, as well as changes in receiver inclination angle, which lead to heat losses that affect the overall receiver’s performance. The need for the commercialisation of economically viable parabolic dish systems necessitates further in-depth investigation into cavity receiver designs. As the cavity receiver plays a critical role in transferring solar heat to the engine, any heat loss from the cavity receiver can significantly reduce the efficiency and, consequently, the system’s cost effectiveness. It is therefore essential to assess and effectively minimise heat loss in the cavity receiver to improve the thermal performance of the system, which can contribute to the commercialisation of this type of technology. This novel approach of suppressing natural convection heat loss in a cavity receiver was investigated. The proposed model has not been observed in literature. A cavity receiver with plate fins attached to the inner aperture surface was investigated as a possible low-cost means of suppressing natural convection heat loss in a cavity receiver. Employing air as the working fluid, laminar natural convection heat transfer from the cavity receiver with plate fins attached to the inner aperture surface was investigated for a range of Rayleigh numbers, inclination angles, and fin heights and thicknesses

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference48 articles.

1. An Experimental and computational study of the heat lost characteristics of a trapezoidal cavity absorber, Sol;Reynolds;Energy,2004

2. Experimental evaluation a non-isothermal high temperature solar particle receiver;Bertocchi;Energy,2004

3. Simulation of a volumetric solar reformer, J Sol;Ben-Zvi;Energy-Trans ASME,2007

4. Thermal performance of solar concentrator/cavity receiver systems;Harris;J Sol. Energy,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3