Effect of Milling Time on the Morphological Evolution of Titanium Alloy Powder

Author:

Ogbonna O.S.,Akinlabi S.A.,Madushele N.,Mashinini P.M.,Afolalu A.S.

Abstract

Abstract This work examines the influence of disc milling duration on the morphological transformation and crystal reorientation of titanium alloy powder with a particle size below 90 µm. The disc milling time was varied from 2 mins to 10 mins, the morphological features of the powders were characterized through the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD). From the results, milling time had a significant effect on the morphology and the orientation of phases in the titanium alloy powder. The SEM images revealed a plate-like shape compared with the un-milled powder with a spheriodal shape. It was also observed that the flattening of the particles increased with milling time. This suggests that the powder is ductile. The oxygen content of the particles increased from 3.4 wt. % before milling to above 10 wt. %. XRD results showed that the milling time did not bring about a new phase and in the position of maximum diffraction intensity, which occurred at 2θ equal to approximately 40.6°. However, there was a decrease in the crystallite size while the lattice strain became higher as milling time increased.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference31 articles.

1. Effects of disc milling parameters on the physical properties and microstructural characteristics of Ti6Al4V powders;Dikici;Journal of Alloys and Compounds,2017

2. Reduction of grain size in metals and metal mixtures processed by ball milling;Garroni;Scripta Materialia, Acta Materialia Inc.,2014

3. Al-MWCNT nanocomposite synthesized via spark plasma sintering : effect of powder milling and reinforcement addition on sintering kinetics and mechanical properties;Singh,2018

4. Study of effect of particle size on densification of copper during spark plasma sintering;Diouf;Powder Metallurgy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3