Simulation of Urban Storm Water Runoff Control Based on Big Data

Author:

Liu Yunzhu,Cao Jinbao

Abstract

Abstract The acceleration of urbanization has brought about rapid economic development, but at the same time, it has also brought some damage to the ecological environment. The proportion of hardened area of the ground is higher and higher, and the rainwater runoff pollution caused by rainfall is more and more serious. In order to follow the sustainable development strategy, and for the more stable and high-speed economic development, the control of rainwater runoff pollution is urgent. The purpose of this paper is to simulate the urban storm water runoff control and find the most suitable scheme for storm water runoff pollution control. Because the simulation of SWMM is more accurate than other models, it can directly reflect the situation of rainwater runoff pollution, so the model selected for rainwater runoff in this paper is SWMM, and then build the model, through the collection and collation of the basic data of the study area, the generalization of the sub catchment area and drainage network is completed. Through the analysis of the characteristics of the study area, the rainwater garden and permeable pavement are determined as the scheme to control the rainwater runoff in the study area. Finally, the SWMM model is used to simulate the control effect of rainwater garden and pervious pavement on rainwater runoff pollution control. The experimental results show that the storm water garden can effectively control the impact of SS scouring effect on the environment, significantly reduce the discharge of SS, and significantly reduce the peak concentration of SS, and its ability to control SS increases with the thickness of the surface plant layer. The control ability of rain permeable brick pavement to SS increases with the increase of surface porosity, that is, the control effect of SS is the best when the porosity is 20%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3