Highly Improved Thermionic Energy Converter

Author:

De D. K.,Olawole O. C.,Oyedepo S. O.,Joel E. S.,Olawole O. F.,Emetere M. E.,Omeje M,Ikono U I,Nguyen H M

Abstract

Abstract Thermionic energy converter (TEC) has recently received significant attention, for it holds potential for clean energy generation with a very high theoretical conversion efficiency (60%). For the latter to be achieved, some of the key hurdles are to be overcome. This paper discusses all these key hurdles along with modelling of solar energy conversion using a TEC with nano-materials and metals, using the modified Richardson-Dushman equation, which best describes the thermionic emission current density from these materials. Using two scenarios: allowing natural heat radiation from the back surface of the collector and using controlled heat collection from the collector to maintain it at a fixed temperature. We then discuss results of simulation of the conversion efficiency as a function of temperatures of emitter and collector, work functions and Fermi energy of emitter and collector at absolute zero temperature, solar insolation, the radius of parabolic concentrator and emissivity of radiating surfaces. We discuss the impact of neglecting the radiation losses on the efficiency evaluation as has been done by other workers recently. We suggest some innovative ways to reduce significantly the space charge effect to make a solar TEC a reality.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concentrated thermionic solar cells using graphene as the collector: theoretical efficiency limit and design rules;Nanotechnology;2021-11-16

2. Optimal Design of Thermionic Generator for High Power and High Efficiency Applications;2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2021-11-11

3. Graphene-anode thermionic converter demonstrating total photon reflection;Applied Physics Letters;2021-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3