Author:
Waters T P,Sherman L,Moxey H,Yang J,Court B,Chan H,Ng Y X,Cherrett T J,Oakey A,Theobald K
Abstract
Abstract
The delivery of medical products by drone is potentially game-changing and promises increased speed, particularly when trying to service hard to reach rural areas, and reduced carbon emissions. However, this raises a number of questions, including the effects of flight on the stability of medical products and how this can be mitigated through the design of appropriate packaging. The aim of this study was to design and experimentally evaluate a medical goods package capable of mitigating the vibration experienced during transportation by drone. Two proposed designs have been developed that feature coil spring and wire rope isolators. Transmission of vibration by these prototype packages, together with an industry-standard product, was measured both in the laboratory and in transportation trials. The prototype packages reduced transmitted vibration by a factor of six during drone flight tests but performed slightly worse when transported by car since road inputs occur at characteristically lower frequencies. The prototypes are significantly heavier than the standard product when empty although this is partially offset by a reduction in the number of required cool packs facilitated by the use of high performance vacuum insulation panels.