Author:
Piciucco Davide,Caracoglia Luca
Abstract
Abstract
This paper investigates the energy production of a “meso-scale”, wind-based energy harvester that exploits the torsional aeroelastic instability of a rigid blade-airfoil, elastically supported at equidistant supports. Torsional flutter is a single mode aeroelastic instability phenomenon, in which a diverging dynamic angular rotation of a body occurs. The apparatus relies on a simple mechanism that uses flow-induced pitch motion to extract and convert airflow kinetic energy to electrical energy. The system is composed by a rigid blade-airfoil, connected to a support structure through a non-linear restoring force (torsional spring-like) mechanism that enables the rotation about a reference pivot axis. The proposed technology is designed to be efficient in the range of low and medium wind speeds (10-13 m/s), in which horizontal-axis wind turbines and other harvesters are not efficient. Deterministic pre-flutter, incipient flutter and post-critical vibrations of the apparatus have been already explored in a previous study. This work aims to further investigate the aeroelastic behavior of the “flapping foil” by examining the effect of turbulence, random experimental error and modeling simplifications of the aeroelastic forces. The analysis is conducted at incipient flutter in the frequency domain using classical unsteady force models. Monte Carlo methods are employed to solve for the probability of incipient flutter speed. Several configurations are considered to improve the efficiency of the energy harvester.