Deep Convolutional Neural Network for Air Quality Prediction

Author:

Mao Yushun,Lee Shiejue

Abstract

Abstract In this paper, we tackle air quality forecasting by using deep learning approaches to predict the hourly concentration of air pollutants (e.g., ozone, particle matter PM2.5 and sulfur dioxide). Deep learning (DL), as one of the most popular techniques, is able to efficiently train a scalable model on big data by optimization algorithms. The model is trained for air quality prediction with time series data. Our method takes the deep convolutional neural network (CNN) as the sequence module and inputs the time series data into the CNN model in turn for training. CNN is composed of many functional layers, such as convolution, pooling and ReLU. Convolution layer can effectively extract the sequential features of time series data. Sequential features work better than general features of time series data. Down-sampling in CNN is performed by the Pooling layer. Experimental results show that CNN performs well for air quality prediction.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran;Taghvaee,2018

2. Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV);Pan;JNCI: Journal of the National Cancer Institute

3. Derivation of Backpropagation in Convolutional Neural Network;Zhang,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3