Predictive combining multiple variously hybridized low-dimensional nanocarbons in a single additive for nano-sized energetic materials performance enhancement

Author:

Lukin Alexander

Abstract

Abstract We propose to uncover new opportunities for predictive nano-sized energetic materials performance enhancement through manipulating by vibrational interactions, energy exchange as well as heat transfer enhancement within the reaction zones at nanoscale. The combination of multiple carbon nanostructured materials with various hybridizations within a single substance can uncover new unique properties. Due to a recent fundamental discovery the collective atomic vibrations, called phonon waves, manifested in transition domains of multilayer nanostructures, incorporation of self-organized arrays of metastable nanostructures are capable controlling vibrational interactions and energy exchange within the reaction zones at nanoscale. For using this phenomenon, we propose predictive incorporation into the nano-sized energetic material composition of various carbon-based allotropes, used as catalytic nano-additives, combined with assembling them by the self-organized arrays of differently hybridized low-dimensional nanocarbon promoters. For predictive combining of multiple differently hybridized nanocarbons within a single substance we propose to use the energy-driven initiation of the allotropic phase transformations in nanocarbon promoters by concurrent electron and ion irradiation. For fine tuning the collective atomic vibrations, nanoarchitecture and functionality of the mentioned arrays of differently hybridized nanocarbon promoters we propose using combination of a set of techniques: concurrent electron and ion irradiation, using the surface acoustic waves combined with heteroatom doping along with application external electromagnetic fields and using the data-driven nanoscale manufacturing approach.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference16 articles.

1. Highly energetic compositions based on functionalized carbon nanomaterials;Yan;J. Nanoscale,2016

2. Function and action mechanism of carbon nanomaterials used in propellants;Gao;J. Phys.: Conf. Ser.,2021

3. Enhancement of the fuel regression rate in hybrid propulsion by expandable graphite additive;Elanjickal;J. Combust. Sci. Technol.,2020

4. Universal law of the spatial-periodic nano- and micro- structures excitation during the transient combustion of energetic materials;Lukin;Int. J. Energ. Mater. Chem. Propuls.,2007

5. The instability of physical fields in the liquid-viscous layer during the burning of energetic materials;Lukin;Int. J. Energ. Mater. Chem. Propuls.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3