Asymmetric hollow-fiber filtration membranes based on insoluble polyimide (R-BAPB): Influence of coagulation bath on porous structure

Author:

Borisov I L,Bazhenov S D,Vasilevsky V P,Bakhtin D S,Balynin A V,Yushkin A A,Vaganov G V,Didenko A L,Yudin V E,Volkov A V

Abstract

Abstract The insoluble polyimides are the most promising group of polymer materials for fabrication of solvent stable filtration membranes suitable for operation at elevated temperatures. In order to synthesize asymmetric membranes from insoluble polyimide, it is proposed to fabricate the membranes from a pre-polymer solution (polyamide acid – PAA) by non-solvent induced phase separation method followed by imidization to form non-soluble porous polyimide membrane. The thermoplastic crystallizable polyimide R-BAPB, which is resistant to a number of known organic solvents, was chosen as a membrane material. For the first time, hollow fiber membranes based on imidized PAA (R-BAPB) with a controlled distribution of pores on the inner side of the hollow fiber were formed. It has been established that the use of “hard” non-solvents, such as water or aqueous-organic solutions, is preferable for the formation of a porous structure in the membranes based on PAA (R-BAPB). Synthesized PAA membranes were used to prepare porous membranes based on the thermoplastic polyimide R-BAPB by thermal imidization. Imidization process was confirmed by an increase in the glass transition temperature of the material to 220 °C (corresponds to the glass transition temperature of polyimide (R-BAPB)) and is accompanied by a significant increase in its elastic modulus. The results of the measurements of the transport properties of polyimide membranes for gases and liquids indicate that microfiltration transport pores are present in the membranes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3